
Scene Classification and Image Retrieval Using SPM and LLC

Nikil Viswanathan and Evan Rosen
Department of Computer Science

Stanford University
{nikil,erosen}@cs.stanford.edu

Abstract

We explored the problem of image classification using
a family of methods based on bag of words features. Us-
ing the Spatial Pyramid Matching technique of Lazebnik et
al. [2] we were able to add scene structure information to
the standard bag of words model. As an extension of this
model, Wang et al. [3] propose a novel way to map lo-
cal image descriptors to visual codewords in the Locality-
Constrained Linear Coding. Finally, we experimented with
adapting the Spatial Pyramid representation to a scalable
image retrieval system using Locality Sensitive Hashing.

1. Introduction
We compared the performance of Structural Pyramid

Matching and Locality-constrained Linear Coding over a
suite of values for tunable parameters. Brainstorming about
the real world applications of scene classifications led to the
implementation of an LSH technique for image retrieval.
Ultimately, though we saw promising performance from our
methods, memory limitations capped our potential perfor-
mance even after space complexity optimizations.

2. Scene Classification
The task of image classification plays a central role in

both the human visual experience and a variety of computer
vision tasks. The class of an image can serve as a key piece
of contextual information, useful in resolving the manifold
ambiguities which arise in visual intelligence tasks. For ex-
ample, knowing the class of an image would give excellent
evidence for the type of objects we might expect to detect,
or for the general 3-D composition. We would even expect
different image classes to be amenable to different segmen-
tation techniques. (For example, the edges on a desk should
indicate object boundaries, however the edges within tree
foliage should not.) However, while this tight relationship
between image classification and other vision tasks indi-
cates that it is an important problem, it also points out one

of its fundamental difficulties: there is no obvious represen-
tation to use for image classification because the relevant
signals seem to come from so many different sources.

In the same way that segmentation and object detection
are inherently tied, by virtue of their mutual definition (good
segments tend to be objects and objects tend to be good seg-
mentations), image classes can be thought of in terms of
object detections, depth reconstructions and segmentations.
What do we mean when we say that a particular image is
of a certain class other than that it contains certain objects
classes, possess a certain characteristic segmentation, and
corresponds to a view of a certain type of 3-D environment?
Thus, while solving the task of image classification would
greatly improve many other vision tasks, it comes with the
drawback that an image class is inherently an open ended
notion, whose characteristic features might be best param-
eterized by a variety of image features. And so a large part
of the problem is finding the appropriate representation for
an image which can effectively capture the vague notion of
an image class. The bag of words model has been one of the
most successful answers to this question.

The general idea of bag of words models, is to find a set
of local descriptors called visual words, which generalize
across images, and then to represent an image as a distri-
bution over these words. Contrary to the standard notion
of a linguistic word, visual words do not naturally fall into
discrete well defined categories. So, while any written use
of a linguistic word will be immediately recognizable as an
instance of a particular type of word, there exist no prede-
fined analogs for visual descriptors. Local image descrip-
tors may fall anywhere in a high-dimensional feature space
and we must first find the right way to partition this space,
before we can describe a image as a distribution over a fi-
nite set of visual words. This step is standardly done with
a simple clustering algorithm like k-means, whose cluster
centers compose the codebook or dictionary. Then, given a
new image, we can map each real-valued local descriptor to
a specific visual word in that codebook, and we can begin
to treat images as collections over discrete elements.

The metaphor of visual words also struggles with the fact

1



that there is no obvious way to decompose an image into
a set of local image descriptors. One approach is to sam-
ple these descriptors at regular intervals. However, this can
miss many of the discriminative features for image classi-
fication. For example we might expect corners to be very
discriminative between city and forest scenes. However, if
we simply sample local features such as SIFT on a regular
grid, we might miss many of these corners. A natural solu-
tion to this problem would be to use a keypoint detector like
the Harris corner detector. While this would preform very
well for city versus forest classification, it would might not
generalize well to natural scenes such as ocean or plains
in which such a detector might rarely fire. In general the
absence of keypoints can be thought of as a discriminating
feature for certain scene classes.

Having constructed the analogy to linguistic words,
many existing methods in natural language processing can
then be applied to images. For example, the set of algo-
rithms known as topics models, used in text summarization
and clustering, can be adapted in a straight forward way to
image summarization and clustering. These models repre-
sent an image as a mixture of visual topics, which are them-
selves just distributions over visual words. We might think
of an image as mixture of sky, forest and city, where each
such region is characterized by its own distribution over vi-
sual words.

Fei-Fei and Perona [1] use an approach of this sort for
natural scene classification. Using a novel, supervised vari-
ant of Latent Dirichlet Allocation (LDA), they posit a gen-
erative story by which a class label ultimately yields a set of
visual words. Each image begins by drawing a distribution
over topics according to its category. Then, the topic as-
sociated with each local descriptor is then drawn from this
image specific distribution over topics. Finally, the particu-
lar visual word associated with that local descriptor, is then
chosen from a topic-specific distribution over visual words
for the topic to which that visual word has been allocated.
At test time, a particular set of visual words in a test im-
age can then be used to infer the maximum likelihood class
label.

3. Algorithm

We implemented various combinations of the Spatial
Pyramid Matching technique of Lazebnik et al. [2] and the
Locality-Constrained Linear Coding method of Wang et al.
[3].

3.1. Spatial Pyramid Matching

In general, the success of pure bag of words models is
somewhat surprising, for they operate without any notion of
the spatial layout of visual words. This means that the pres-
ence of a codeword which tends to represent grass would

be treated as identical evidence for a scene class when it
occurs at the bottom of an image and at the top. In an at-
tempt to reintroduce such information, Lazebnik et al. [2]
proposed the Spatial Pyramid Matching (SPM) technique.
The basic intuition of SPM is that we can use a collection
of spatially constrained “bags” to capture characteristic lo-
cations of certain visual words. Specifically, a pyramid of
successively finer grids is placed on top of the local feature
descriptors. All of the visual words which fall within each
cell of this pyramid are then pooled together to form the
canonical bag or histogram. The visual words in this model
are simply the 128-dimensional SIFT feature vectors which
have been computed on a regular 16 pixel grid. As we noted
above, the visual words approach requires that we represent
the continuous space of local feature descriptors using a fi-
nite set of descriptor classes. To find these classes k-means
is run on the SIFT features from all of the training images
to yield around 200 codewords.

Then, after mapping each of the local descriptors to their
nearest codebook entry, the pyramid binning scheme de-
scribed above can be applied to create a collection of spa-
tially constrained histograms. Finally, all of the histograms
for a given image are concatenated to form a single feature
vector. At this point, the SPM model reduces to a standard
multi-class classification problem. To do this, Lazebnik et
al. use an SVM with a non-linear, histogram intersection
kernel [2] in which the similarity between two feature vec-
tors is just the minimum bin value. Thus two images are
considered very similar if they allocate their probability to
the same visual code words to similar degrees.

3.2. Locality-Constrained Linear Coding

Building off of the state of the art Spatial Pyramid
Matching [2], Wang et al. developed a new technique for
mapping a feature descriptor to a codeword group in a
sparse and local fashion. In contrast to the Vector Quan-
tization method of assigning each descriptor to the nearest
codeword, LLC extends the notions proposed in ScSPM [4]
of a sparse nonlinear coding. The authors of ScSPM no-
ticed that the codes tended to be local relative to the de-
scriptor many times and suggested a method of designing
local codes for each descriptor. They displayed a theoretical
result which claimed that locality was more essential than
sparsity when solving a nonlinear SVM optimization prob-
lem. The LLC method again extends this idea and creates
a local linear approximation to the descriptor by projecting
it to a local coordinate space and using a linear kernel is
able to achieve high performance with a very fast imple-
mentation. This locality constraint also guarantees sparsity
through the nature of the constraint and allows for scala-
bility by reducing the nonlinear kernel SVMs running time
from O(n3) in which n is the number of support vectors, to
O(M + K) with M clustered codebook entries and K nearest



neighbors. In order to describe the feature in terms of local
codewords, the LLC method performs a K-nearest-neighbor
search to find the closest codewords and then solved s con-
strained least square optimization problem to discover co-
efficients.

4. Code
• runTests.m - Our main control file for the scene classi-

fier, which contains all of the parameter options.

• BuildPyramid.m - Builds the pyramid feature vectors

• lshRetrieve.m Builds and test the LSH system.

• nearestNeighbor.m - Approximates the quality of the
image retrieval.

• computeClosestNeighbor3.m - Contains the evaluation
algorithm for selecting the closest neighbor from the
top 3 neighbors.

5. Extensions
5.1. Optimizations for speed

Calculating the codeword dictionary, building the spatial
pyramid, and running the SVM were memory and compute
intensive processes for our machines. Our evaluation sys-
tems had 1-2 gigabytes of RAM so we implemented sev-
eral optimizations to squeeze the last bit of performance
from our models in training. To make k-means tractable,
we learned a codebook for each class separately and then
combined these into a single global codebook. Specifically,
we clustered the descriptors from a random sample of 50
images in each class into 100 clusters, yielding a codebook
of size 1500 for the outdoor scene category dataset and 1200
for the PPMI dataset. Having removed this bottleneck, it be-
came apparent that the next limiting step lay in compiling
the spatial pyramids.

Due to a lack of contiguous memory to store the pyramid
array, we eliminated holding the train array in memory dur-
ing the calculation of the test array by saving it out to file
and hydrating the structure when needed. After increasing
the size of the training set, we discovered that even com-
piling one pyramid at a time in the inner function before
saving it to file was crashing due to a lack of contiguous
variable space (our computers had < 1.2 GB of continuous
ram space) and we attempted the same trick of saving each
individual image pyramid to file and then assembling the
entire pyramid outside of the inner function; this allowed
for only slightly more memory intensive computations.

5.2. Image Retrieval

Closely related to the task of image classification is the
task of image retrieval. However, whereas image classifica-

Database Size 10 50 75 100
NN with Hist. Int. 66 62 - -
3-NN with Hist. Int. 56 61 - -
LSH L− 1 Accuracy 56 56 59 59
LSH L− 2 Accuracy 48 48 45 45

Figure 1. KNN and LSH classification results versus number of
images in database

tion usually exists in a supervised framework with a closed
set of classes, image retrieval can be applied without super-
vision, even without any explicit prior knowledge about the
classes. Specifically, we explore the case in which given a
query image we would like to find similar images. One ap-
proach in these situations is to find some way to embed im-
ages in a space which makes good matches nearby. We were
interested in testing whether the combination of the spatial
pyramid match representation with the histogram intersec-
tion kernel could be used in this way. We then consider the
nearest neighbors to a query image as the retrieval results.
While were able to visually evaluate our work by simply
inspecting the nearest neighbors by hand, we also used the
class labels to construct a coarse automatic evaluation met-
ric. The rate at which the nearest neighbor class matched
the query image class are reported in row 1 of Table 1.

Interestingly these evaluation results are simply the clas-
sification accuracy for the one of the simplest algorithms,
nearest-neighbor interpolation. On this basis we explored
the low hanging fruit of image classification by creating a
hierarchical 3-nearest neighbor algorithm. Despite the fact
that such an algorithm will almost always perform worse
than a more complex classification model such as an SVM,
it can serve as a direct way to intuitively evaluate an image
representation and distance metric. By inspecting pairs of
images which are considered close, we can gain an intuition
for the types of image attributes which our model is rightly
or wrongly drawing attention to. Consider the results in Fig-
ure 2. We can see that the location of the houses in (a) and
(b) are very similar, which confirms our intuitions about the
value of using spatial. Similarly, the fact that both houses
have fences in them reminds us that the gradient based na-
ture of SIFT does a very good job at encoding detailed pat-
terns. In images (c) and (d) we can see that the algorithm
successfully picked out a similar scene class. However, if
we note the drastic difference in the sky composition, we
can confirm that our representation must not be assigning
great importance to such attributes. While this is accept-
able for road classification, we can see why SIFT descrip-
tors might not be ideal for scenes characterized by relatively
smooth, continuous regions, like sky and clouds.

While finding a good representation and distance met-
ric may work well in small cases, it is not enough for sys-
tems like Google image search, which operate over vast



(a) (b)

(c) (d)

Figure 2. NN matches

databases with billions of images. In these situations, a
straight forward comparison of the query image with the en-
tire database becomes intractable. A common way to cope
with this problem is to use a technique known as locality
sensitive hashing (LSH). In the LSH framework, a compo-
sition of hash functions is constructed such that the proba-
bility that two images hash to the same bin is proportionate
to the similarity between those two images by some metric.

To use such a framework, we simply hash all of the im-
ages in our database and create an inverted index from the
bin indices to the images. Given a query image we can
then just compute the hash value and find the appropriate
postings list in our inverted index. The main difficulty in
LSH applications is finding a construction of hash functions
which approximate a distance metric. Though we would
ideally find an LSH family to encode the histogram inter-
section kernel, we can at least evaluate the spatial pyramid
representation with simple distance metrics like the L1 and
L2 norm. Using a matlab implementation of L1 and L2 ap-
proximation families by Indyk et al. we were able to get
surprisingly close to the optimal behavior of our exact near-
est neighbor interpolation algorithm. An example results
can be seen in Figure 3.

6. Results

Unless otherwise stated, the results shown were run with
LLC on 30 training and 20 testing examples, a 1000 code-
word dictionary, 3 spatial pyramid levels, a k closest code-
words value of 5, max patch pooling, sum scale pooling,
without the histogram interesction kernel, and on the 15
class scene categories dataset.

(a) query image

(b) Nearest Neighbor 1

(c) Nearest Neighbor 1

Figure 3. LSH example retreival

6.1. Training Set Size

After optimizing the codeword dictionary generation and
the pyramid compilation process we were able to boost up
the codebook size to 1000 and run up to 30 training and 20
test examples. Observing the almost linear increase in per-
formance (Table 4) as the size of the training set grows, we
postulate that with a more powerful machine we could see
better performance by still increasing the training set size.
The 30 training examples and 20 test examples completely
max out the memory on our machines and while testing we
discovered that using this test to train ratio gave us the best
performance.

Training Set Size 10 20 30
Test Set Size 20 20 20
Acc (%) 56.7 65.3 77.0

Figure 4. Effect of training set size on accuracy.

6.2. Pyramid Levels

Varying the number of spatial pyramid levels (Table 5)
only affected performance slightly with a convergence of



the best performance around a 3 level pyramid structure.
The variance may be due to the small training set size and
the small test set size. With PPMI we observed that 4 spatial
levels had the best performance and we postulate that since
this task of activity classification is slightly different from
scene classification, the increased number of spatial granu-
larities allows the algorithm to hone in to particular regions
of interest which works better for this problem since we are
only concerned with a particular region of interest (the hu-
man and the instrument) instead of the entire image as in
scene classification.

Pyr. Levels 1 2 3 4 5
Acc (%) 66 73 77 75 Out of Memory

Figure 5. Effect of number of pyramid levels on accuracy.

6.3. Varying k

Varying the number of the nearest neighbor codewords
that a feature descriptor is a linear combination of resulted
in minor changes in performance (Table 6) but did not show
a consistent trend. The twin peaks at values of 5 and 10 for
k, and especially the value at 10, seem to be an artifact of
the small training and test set sizes as we would expect to
see a steady increase in performance towards one value of
k and a decrease in performance afterwards.

k 1 3 5 7 10 12
Acc (%) 71.6 75.7 77.0 75.3 76.3 75.0

Figure 6. Effect of number of nearest neighbor (k) on accuracy.

6.4. SVM Slack

Surprisingly modifying the SVM slack had no effect
on the classification performance of our model (Table 7).
Training and testing on such a small dataset would suggest
that model could be overfitting to the data, which would
have been improved by introducing and using a larger slack
variable and aggravated by reducing and eliminating the
slack variable. We conclude that we have enough training
data to create a model that accurately learns the structure of
the entire scene data corpus and doesn’t overfit to the train-
ing set.

SVM Slack None 1 10
Acc (%) 74.0 74.0 74.0

Figure 7. Effect of SVM slack on accuracy. Using 4 spatial pyra-
mid levels and max patch and max spatial level pooling.

6.5. Pooling

We experimented splitting up the feature descriptor spa-
tial pooling into two stages and at each step implemented
sum pooling and max pooling. In the step of compiling the
feature descriptor within a given region to form the bins on
the lowest level spatial pyramid, we implemented two ap-
proaches: 1) simply creating a weighted histogram of the
nearest codeword neighbors values of the feature descrip-
tors contained in the patch and 2) choosing the maximum
weight seen for each codeword over all of the features in
that patch. Secondly, in the process of combining bins of a
lower spatial pyramid level to construct an upper level bin
we implemented a max value selection technique in addi-
tion to a summing approach. We noticed LLC achieved the
best performance when using max pooling in both cases.

6.6. Histogram Intersection Kernel

The histogram interesction kernel when applied to dif-
ferent sets of parameter values, often decreased the perfor-
mance of LLC. In our optimal parameter setting, using a
linear kernel vs the histogram intersection kernel actually
had no effect upon the classification accuracy.

6.7. People Playing Musical Instruments

We also experimented on the People Playing Musical In-
struments (PPMI) dataset [5] which tests the robustness of
our classification systems in a very different way. Intuitively
this task requires greater attention to detail and may place
different demands on the bag of words model. For example,
we might expect the important discriminative visual words
to be relatively sparse in classifying musical instruments,
whereas scene classification might rely on the visual words
which occur frequently over uniform textured regions like
grass or forest. This suggests that the PPMI dataset might
benefit from a keypoint-based local descriptor sampling ap-
proach, as we would expect instruments to be relatively rich
in keypoints in comparison to background regions.

Model Codewords MultiSIFT Pyr. Levels Test Acc.
SPM 200 True 4 0.14
LLC 1000 True 4 0.28
LLC 1000 True 3 0.35

Figure 8. Results on the PPMI dataset on 100 train and 100 test
images

7. Conclusion
Our overall results are shown in Figure 9. Overall we

saw promising performance trends and believe that with
additional computational resources we can continue to im-
prove accuracy. Moreover, we also demonstrated that the



spatial pyramid feature representation even without the his-
togram intersection kernel can provide a useful basis for
scalable image retrieval. Exciting directions of future re-
search include the both the enhancement of the SPM feature
representation for image retrieval and possibly the develop-
ment of an LSH approximation for the histogram intersec-
tion kernel.

Figure 9. Summary of results.

References
[1] L. Fei-Fei and P. Perona. A bayesian hierarchical model for

learning natural scene categories. In Computer Vision and Pat-
tern Recognition, 2005. CVPR 2005. IEEE Computer Society
Conference on, volume 2, pages 524–531. Ieee, 2005.

[2] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of fea-
tures: Spatial pyramid matching for recognizing natural scene
categories. In Computer Vision and Pattern Recognition,
2006 IEEE Computer Society Conference on, volume 2, pages
2169–2178. Ieee, 2006.

[3] J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong.
Locality-constrained linear coding for image classification.
2010.

[4] J. Yang, K. Yu, Y. Gong, and T. Huang. Linear spatial pyramid
matching using sparse coding for image classification. 2009.

[5] B. Yao and L. Fei-Fei. Grouplet: A structured image repre-
sentation for recognizing human and object interactions. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), San Francisco, USA, June 2010.


